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Abstract 
This study investigates drought 
conditions in Vietnam and its 
seven sub-climatic regions using 
the Standardized Precipitation-
Evapotranspiration Index (SPEI). 
SPEI was derived from daily, 
high-resolution (10-km) 
precipitation and temperature 
products from the CMIP6-VN 
dataset, which statistically 
downscaled CMIP6 global 
models. Performance evaluation 
of 22 CMIP6-VN models 
confirmed their accuracy in 
representing precipitation and 
temperature characteristics for 
the reference period (1985–2014). 
Regarding the future period 
(2015–2099) under three Shared 
Socioeconomic Pathways (SSPs) 
(SSP1-2.6, SSP2-4.5, and SSP5-8.5), 
significant warming is projected 
across Vietnam, while 
precipitation projections remain 
uncertain, with most areas 
anticipated to experience 
slightly increased rainfall. SPEI 
results indicate that 
precipitation significantly 
influences drought conditions 
more than temperature, 
accounting for approximately 
70% of the SPEI trend under SSP5-
8.5, which consequently 
introduces substantial 
uncertainty in drought 
projections. Drought conditions 
under different global warming 
levels (GWLs) were investigated, 
showing that while drought may 
not occur more frequently at 
high GWLs, more extreme 
drought events are projected. 
Five models exhibiting the most 
pronounced increasing drought 
trends were further analyzed, 
revealing a deterioration of all 
drought characteristics, 
particularly in the Northwest, 
Northeast, and Central 
Highlands. Copula statistical 
analysis reveals that drought 
events with higher return periods 
tend to be more prolonged and 
severe in the future.  

Keywords 
Drought; Statistical Downscaling; 
CMIP6; SSP scenarios; Vietnam; 
Climate Change 
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Résumé 
Cette étude examine les 
conditions de sécheresse au 
Vietnam et dans ses sept sous-
régions climatiques à l’aide de 
l’Indice Standardisé de 
Précipitations et 
d’Évapotranspiration (SPEI). Le 
SPEI est dérivé de données 
quotidiennes de précipitations et 
de températures à haute 
résolution (10 km) issues du jeu 
de données CMIP6-VN, lequel est 
obtenu par descente d’échelle 
statistique des modèles globaux 
CMIP6. L’évaluation des 
performances de 22 modèles 
CMIP6-VN a confirmé leurs 
bonnes capacités dans la 
représentation des 
caractéristiques des 
précipitations et des 
températures pour la période de 
référence (1985–2014). 
Concernant la période future 
(2015–2099) selon trois Scénarios 
Socioéconomiques Partagés 
(SSP)  (SSP1-2.6, SSP2-4.5 et SSP5-
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8.5), un réchauffement 
significatif est projeté sur 
l’ensemble du Vietnam, tandis 
que les projections des 
précipitations restent 
incertaines, bien que la plupart 
des régions anticipent une 
légère augmentation des 
précipitations. Les résultats du 
SPEI indiquent que les 
précipitations influencent les 
conditions de sécheresse de 
manière plus significative que la 
température, représentant 
environ 70 % de la tendance du 
SPEI sous le scénario SSP5-8.5, ce 
qui introduit ainsi une incertitude 
substantielle dans les 
projections de sécheresse. Les 
conditions de sécheresse sous 
différents niveaux de 
réchauffement global (GWL) ont 
été examinées, révélant que, 
bien que la fréquence des 
sécheresses ne soit pas 
nécessairement plus élevée aux 
niveaux de réchauffement 
élevés, davantage d’épisodes 
extrêmes sont projetés. Cinq 
modèles présentant les 
tendances de sécheresse les 
plus marquées ont été analysés 
plus en détail, mettant en 
évidence une détérioration de 
toutes les caractéristiques des 
sécheresses, en particulier dans 
le Nord-Ouest, le Nord-Est et les 
Hauts Plateaux du Vietnam. 
L’analyse statistique par copules 
révèle que les événements de 
sécheresse avec des périodes 
de retour plus élevées tendent à 
être plus prolongés et plus 
sévères dans le futur. 

Mots-clés 
Sécheresse; Descente d’échelle 
statistique; CMIP6; Scénarios SSP; 
Vietnam; Changement 
Climatique 
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1. Introduction

Vietnam, a Southeast Asian developing 
country with a dense population of 
approximately 100 million, has come to play an 
important role in global food production (WTO, 
2023). According to the Food and Agriculture 
Organization of the United Nations (FAO) 
Statistics (FAO, 2022), Vietnam is the world’s 
fifth-largest producer of rice, the fourth-largest 
producer of cashew nuts, and the sixth-largest 
producer of tea. Notably, the country is the 
largest producer of black pepper, accounting 
for one-third of the global market, the second-
largest producer of cinnamon and coffee, and 
the third-largest producer of rubber and spices 
in the world (MARD, 2024). Furthermore, 
Vietnam is a major exporter of other 
agricultural products, including cotton, 
peanuts, sugarcane, and walnuts. As 
highlighted in the 2021 United Nations Food 
System Summit (UNFSS) dialogue, Vietnam’s 
agricultural sector not only meets domestic 
food demands but also significantly 
contributes to global food security (UNFSS, 
2021). Leveraging these strengths, the country 
aims to rank among the world’s top ten in 
agricultural production by 2050, with a focus on 
a modern, efficient, and environmentally 
friendly agricultural processing industry (MPI, 
2021). 

However, anthropogenic global climate 
change poses a serious threat to Vietnam’s 
agricultural sector (World Bank Group, 2022). 
Similar to other Southeast Asian countries, 
Vietnam has experienced volatility in food 
supply due to climate change (Dao and 
Nguyen, 2022). For a country whose economy 
heavily depends on agricultural production, 
like Vietnam, the increasing frequency and 
intensity of water-related extreme climate 
events, such as droughts, exacerbate the risk of 
severe agricultural damage.  

Drought is a natural hazard caused by a 
prolonged deficiency in precipitation relative 
to normal expectations. As this shortage 
persists, it fails to meet the water demands of 
both human activities and the 
environment.  There are various ways to 
classify droughts, but they are primarily 
categorized based on two approaches: 
considering drought as a physical 
phenomenon or via its impacts on socio-

economic systems. Despite the difficulty of 
defining drought objectively, which has led to 
the development of a large number (>100) of 
different drought indices (Lloyd-Hughes, 2014), 
droughts are commonly classified into 
meteorological, hydrological, agricultural, and 
socio-economic droughts (Wilhite and Glantz, 
1985). Unlike rapid-onset natural hazards such 
as earthquakes, droughts develop gradually 
and can often be monitored and forecasted 
based on their strong connections to rainfall, 
temperature, and other meteorological 
variables (Wilhite, 2000; Fahim et al., 2016). While 
meteorological droughts are primarily caused 
by precipitation deficits, growing evidence 
indicates that increased temperature can 
significantly intensify their severity, duration, 
and spatial extent (Vicente-Serrano et al., 2010; 
Dai, 2011; Cook et al., 2014; Trenberth et al., 2014; 
Diffenbaugh et al., 2015). Thus, studies that 
employ solely  precipitation-based indices, 
such as the Standardized Precipitation Index 
(SPI) (McKee et al., 1993) and the Effective 
Drought Index (EDI) (Byun and Wilhite, 1999), 
may underestimate future drought risks by not 
accounting for the crucial role of temperature 
(Dai, 2011; Trenberth et al., 2014). Moreover, there 
is evidence suggesting that precipitation 
projections still have substantially higher 
uncertainties compared to temperature 
projections, especially at the regional scale 
(Gao et al., 2016; Persad et al., 2020; Zappa et al., 
2021; Kotz et al., 2024). To address the limitations 
of precipitation-only metrics, the 
comprehensive Standardized Precipitation 
Evapotranspiration Index (SPEI) was developed. 
The SPEI is highly effective since it integrates 
both precipitation and atmospheric 
evaporative demand, where the latter can be 
estimated using temperatures and 
extraterrestrial radiation, both of which 
influence drought persistence (Vicente-
Serrano et al., 2010, 2014; Beguería et al., 2014). It 
represents a robust tool for retrospectively 
assessing historical droughts and 
prospectively projecting future changes, 
offering advantages over indices focused 
solely on precipitation. 

Vietnam’s susceptibility to drought has been 
well-documented, given its largely agricultural 
economy and the profound impact of water 
availability fluctuations on millions of 
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livelihoods. Droughts are ranked as the third 
most costly natural hazard in Vietnam, 
frequently causing substantial economic 
losses (Nguyen and Shaw, 2011). Over the past 
few decades, the country has faced several 
severe drought events. According to the 
National Action Programme (NAP) to Combat 
Desertification (MARD, 2002), from 1976 to 1998, 
droughts seriously affected 11 crop seasons in 
Vietnam, leading to extensive damage, 
including the destruction of hundreds of 
thousands of hectares of rice, coffee, tea, and 
fruits. Notably, the 1997–1998 drought event 
affected about 3.8 million people with 
freshwater shortages and resulted in total 
losses and damages exceeding $500 million in 
Vietnam (MARD, 2002). The 2015–2016 episode 
resulted in an estimated $670 million in 
damages and left nearly 2 million people 
grappling with water scarcity (Le et al., 2021; Ha 
et al., 2021; FAO, 2024). Both events were related 
to major El Niño events. More recently, an 
unprecedented drought occurred in 2019–
2020, despite a weak El Niño event, and 
exacerbated water shortages across the 
country (OSNSC, 2021). Given that global and 
regional climate models consistently project 
rising temperatures, erratic precipitation 
patterns, and increased drought risks across 
the Southeast Asian mainland (Dai, 2011; 
Prudhomme et al., 2014; Arnell and Gosling, 2016; 
Naumann et al., 2018), there is an urgent 
imperative to comprehensively assess 
potential future drought emergencies in 
Vietnam.  

The Paris Agreement of 2015 aims to limit global 
warming by the end of the 21st century to well 
below 2°C above pre-industrial levels while 
striving to restrict the increase to 1.5°C. 
Scientists have warned that if global 
temperatures rise beyond 2°C, humanity and 
ecosystems will face severe threats (IPCC, 
2021). However, according to the last United 
Nations Emission Gap Report (2024) "Countries 
are still off track to deliver on the globally 
insufficient mitigation pledges for 2023" and 
current policies could lead to more than 3°C 
warming by the end of the century. Developing 
climate projections, including extreme events, 
is therefore essential. In Vietnam, while SPEI has 
been recently employed to examine historical 
drought occurrences (e.g., Le et al., 2019; Le et al., 
2020; Phan-Van et al., 2022), there remains a 
crucial gap in knowledge regarding 

comprehensive multi-scenario projections 
that integrate SPEI with the latest high-
resolution climate model outputs. This gap is 
especially significant considering Vietnam’s 
diverse hydroclimatic gradients, which range 
from tropical monsoon regimes in the south to 
more temperate conditions in the northern 
uplands. Therefore, the objective of this study is 
to assess the future changes in drought 
occurrences in Vietnam based on the most up-
to-date detailed climate projection data. In 
particular, we will focus on analyzing these 
changes under different global warming 
scenarios, ranging from 1.5°C to 4°C above the 
pre-industrial level. The rest of the paper is 
organized as follows: Section 2 presents the 
study area, data sources, and methods; 
Section 3 discusses the results, and the 
conclusions are presented in Section 4. 
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2. Materials and Methods  

2.1. Studied regions 

In this study, we focus on Vietnam and its seven sub-climatic regions (Figure 1). These sub-climatic 
regions — Northwest (R1), Northeast (R2), Red River Delta (R3), North Central (R4), Central South (R5), 
Central Highlands (R6), and Southern (R7) — are categorized based on variations in radiation and 
temperature, which differentiate the North domain (R1–R4) from the South domain (R5–R7), as well as 
differences in rainfall, which further distinguish sub-climatic regions (Nguyen and Nguyen, 2004). 

 

Figure 1. Topography of Vietnam and location of the seven sub-climatic regions. 

 

Source: Authors’ own visualization. Original. The topography data is extracted from Hydroshed data (NASA SRTM, 
2013).  
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2.2. CMIP6-VN: a downscaled dataset for Vietnam 

To conduct an in-depth analysis of future droughts across the seven sub-climatic regions of Vietnam, 
a high-resolution dataset is indispensable. This is particularly crucial as certain regions, such as parts 
of Region R4 and most of R5, span a relatively narrow longitudinal range, with some areas 
encompassing less than 0.5 degrees (corresponding to approximately 50 km) (Figure 1). It is 
noteworthy that while the widely used Coupled Model Intercomparison Project Phase 6 (CMIP6) global 
climate projections data (Eyring et al., 2016) have demonstrated their substantial role in various 
climate-related studies, their relatively coarse resolution restricts their applicability to local and 
regional scales, such as the area of interest in our study.  

A recent study by Tran-Anh et al. (2023) introduced a new CMIP6-downscaled dataset for Vietnam 
using the Bias Correction and Spatial Disaggregation (BCSD) technique. The dataset, named CMIP6-
VN, contains the downscaled outputs of 35 global climate models (GCMs) from both Tier-1 and Tier-2 
CMIP6 experiments (Riahi et al. 2017) at a high spatial resolution of 0.1°×0.1° (~10 km), with a daily time 
step, covering the reference period 1980-2014 and the future period 2015-20991. Note that the Tier 1 
CMIP6 experiments consist of four 21st century Shared Socioeconomic Pathways (SSP) scenarios (SSP1-
2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), providing continuity with CMIP5 experiments by targeting a similar 
level of global radiative forcing. The Tier 2 experiments include more SSPs, such as SSP1-1.9 (to address 
the Paris Agreement target of 1.5°C), SSP4-3.4 (a gap-filling mitigation scenario), SSP4-6.0 (an update 
of RCP6.0), and SSP5-3.4OS (overshoot, testing the efficacy of certain mitigation measures) (Riahi et al., 
2017). The performance of CMIP6-VN has been demonstrated for both precipitation and temperature. 
More importantly, the use of a large number of GCMs provides the ability to estimate the uncertainties 
of climate projections related to inter-model spread, including extreme climate events.  

To identify drought conditions, a widely employed method is the utilization of rainfall-related indices, 
which are primarily constructed based on the deficiency of rainfall over a predetermined period (e.g. 
Vu-Thanh et al., 2014). However, several studies have highlighted the significance of considering 
temperatures, which drive evapotranspiration, in drought-estimation indices. Ignoring temperatures 
in these indices can result in a substantial underestimation of drought conditions (AghaKouchak et al., 
2014; Diffenbaugh et al., 2015; Easterling et al., 2007; Griffin & Anchukaitis, 2014; Im et al., 2012; Kelley et al., 
2015). Therefore, our study uses the SPEI index that incorporates both rainfall and temperature 
(including daily mean, daily maximum, and daily minimum temperatures, see section 2.3) obtained 
from CMIP6-VN. We conduct the analysis for three global greenhouse gas emission scenarios: 1) a 
sustainable development pathway (SSP1-2.6), with a focus on low-carbon policies; 2) a middle-of-the-
road scenario (SSP2-4.5), where global development continues without significant changes to existing 
policies or economic growth patterns; and 3) a high-emissions pathway (SSP5-8.5). It is important to 
note that the best estimates of future global warming levels are 1.7°C, 2.0°C and 2.4°C  above pre-
industrial period for mid-term (2041-2060) and 1.8°C, 2.7°C  and 4.4°C for long-term (2081-2100) under  
SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios respectively (IPCC, 2021). Since CMIP6-VN does not provide 
full downscaling for all 35 GCMs across these three scenarios and for both rainfall and temperatures, 
we opted to use a subset of CMIP6-VN for this study, which includes downscaled products from only 22 
GCMs (Table 1). For clarity, from henceforth, whenever we refer to the term “model” or the name of a 
specific GCM, we are referring to its corresponding downscaled product within the CMIP6-VN dataset. 

 

 

 

 
                                                                 
1 Although 2015 is now in the past, it was considered the future at the time the climate simulations were initiated, as they projected 
“future” conditions based on scenarios starting from 2015. 
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Table 1. List of the 22 downscaled CMIP6 GCMs from the CMIP6-VN dataset used in this study. 

 

No GCM Original Resolution 
(lat. × lon.) 

Member Variant 

1 ACCESS-CM2 1.88°×1.25° r1i1p1f1 

2 ACCESS-ESM1-5 1.88°×1.25° r1i1p1f1 

3 AWI-CM-1-1-MR 0.93°×0.94° r1i1p1f1 

4 BCC-CSM2-MR 1.13°×1.13° r1i1p1f1 

5 CMCC-ESM2 1.25°×1.25° r1i1p1f1 

6 CNRM-CM6-1-HR 1.25°×0.94° r1i1p1f1 

7 CNRM-ESM2-1 0.5°×0.5° r1i1p1f2 

8 CanESM5 1.41°×1.39° r1i1p1f2 

9 EC-Earth3 0.7°×0.7° r1i1p1f1 

10 EC-Earth3-Veg 0.7°×0.7° r1i1p1f1 

11 FGOALS-g3 2°×2.03° r1i1p1f1 

12 GFDL-ESM4 1°×1° r1i1p1f1 

13 GISS-E2-1-G 2.5°×2.5° r1i1p1f2 

14 HadGEM3-GC31-LL 1.88°×1.88° r1i1p1f3 

15 INM-CM5-0 2°×1.5° r1i1p1f1 

16 IPSL-CM6A-LR 2.5°×1.27° r1i1p1f1 

17 MIROC-ES2L 1.41°×1.41° r1i1p1f1 

18 MIROC6 2.81°×2.77° r1i1p1f2 

19 MPI-ESM1-2-HR 0.94°×0.94° r1i1p1f1 

20 MRI-ESM2-0 1.13°×1.13° r1i1p1f1 

21 NESM3 1.88°×1.88° r1i1p1f1 

22 UKESM1-0-LL 1.88°×1.25° r1i1p1f2 
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2.3. Drought index: SPEI 

Our study employs the Standardized Precipitation-Evapotranspiration Index (SPEI), which integrates 
the impacts of both precipitation and temperature (Vincente-Serrano et al., 2010; Beguería et al., 2014). 
The three main steps for calculating SPEI at scale of 12-month are outlined below.  

● Step 1: Estimation of potential evapotranspiration (PET) 

Potential evapotranspiration is the amount of water that would be evaporated given the 
meteorological conditions, assuming no water limitation. Various methods, including the Thornthwaite 
(Thornthwaite, 1948), the Hargreaves (Hargreaves, 1994), and the more intricate Penman-Monteith 
method (Allen et al., 1998), can be employed to estimate PET. However, the Thornthwaite method may 
overestimate PET and then overestimate drought events (Sheffield et al., 2012), while the Penman-
Monteith method necessitates extensive data that is not included in CMIP6-VN (e.g., humidity, air 
pressure, wind speed, radiation, etc.). Consequently, this study employs a modified version of the 
Hargreaves method, incorporating adjustments that bring it closer to the Penman-Monteith method 
(Droogers and Allen, 2002; Beguería et al., 2014; Fu et al., 2023): 

𝑃𝐸𝑇 = 0.0013 × 0.408𝑅 × ൫𝑇௩ + 17.0൯ × (𝑇𝐷 − 0.0123𝑃).          (1) 

where PET is the potential evapotranspiration (mm/month), Ra is the extraterrestrial radiation 
(estimated from the latitude and the month of the year) (MJm-2day-1); Tavg is the monthly average 
temperature; TD is the temperature range (°C), calculated as the monthly average of the difference 
between daily maximum temperature and minimum temperature; P is precipitation (mm/month).  

● Step 2: Determination of the climatic water balance (CWB) by subtracting PET from precipitation 
for each month. 

𝐶𝑊𝐵 = 𝑃 − 𝑃𝐸𝑇  (2) 

● Step 3: Estimation of SPEI-12 

We then compute the 12-month accumulation of CWB by moving along the CWB series. A log-logistic 
probability distribution is subsequently fitted to the 12-month cumulative CWB values. Finally, the 
cumulative probability of the fitted distribution is transformed into standard normal values to derive 
the SPEI (referred to as SPEI-12), thereby standardizing the index for comparative analysis across 
various regions and timescales. 

Drought events are identified when the SPEI-12 value falls below a threshold, typically set at -0.5, for a 
continuous period of at least two months, as established in previous studies (Wang et al., 2014; Sun et 
al., 2021; Yue et al., 2021). The five common drought characteristics (i.e., frequency, severity, duration, 
intensity, and inter-arrival time) are subsequently defined and illustrated in Figure 2. In essence, 
frequency refers to the number of drought events that occur during the study period. Severity is 
calculated as the sum of SPEI-12 absolute values below -0.5 for each drought event, and duration is the 
length of time (in months) that SPEI-12 remains below this threshold. Intensity is determined by dividing 
severity by duration, while inter-arrival time is the elapsed time (in months) between two consecutive 
drought events.  
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Figure 2. Illustration of drought categories (including No-Drought, Mild, Moderate, Severe, and Extreme) and 
drought events (frequency) and their characteristics (including severity, duration, and inter-arrival time) 
calculated using SPEI-12. 

 

Source: Authors’ own visualization. Original.  

 

Given the coverage of the CMIP6-VN dataset for the historical (1980–2014) and future (2015–2099) 
periods, we selected the 30-year period of 1985–2014 as the reference period for fitting the probability 
distributions and estimating the parameters. The estimated parameters are then subsequently 
applied to the entire time series. This calculation procedure is recommended in several studies (e.g., 
Touma et al., 2015; Tam et al., 2023). It is worth noting that we also tested alternative methods, such as 
calculating SPEI separately for the reference and future periods or using a merged data series 
combining both periods. However, these approaches (not shown) yielded no significant differences in 
the results. 

 

2.4. Bivariate joint distribution using copula 

Given the stochastic and multifaceted nature of droughts, it is imperative to simultaneously assess 
multiple drought characteristics for an accurate assessment of drought risk. To model the relationship 
between drought characteristics, an effective approach is the utilization of bivariate joint distribution 
models. These models elucidate the relationship and distribution of two variables, providing insights 
into their joint behavior. However, developing these models can be challenging, as the distinct 
distributions of drought characteristics violate the requirement that all marginal distributions belong 
to the same family (Frees and Valdez, 1998). To address this issue, Shiau (2006) employed a copula-
based technique (Sklar, 1959) to model the joint distribution of drought duration and severity. By 
separating dependence effects from marginal distribution effects, copula-based techniques have 
been widely applied in various drought-related studies (Shiau and Modarres, 2009; Kwon and Lall, 2016; 
Amirataee et al., 2018; Das et al., 2020; Li et al., 2020; Poonia et al., 2021). In this study, we employ copula-
based techniques to compute the joint return period of drought severity and duration. The calculation 
process is structured into two phases: 1) identifying the univariate distribution functions of drought 
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severity and duration; and 2) applying copulas to combine the univariate distributions into a bivariate 
distribution. 

Specifically, for each sub-climatic region, all drought events and their corresponding severity and 
duration are estimated using the aforementioned method (Figure 2). In the initial phase, four 
distributions, including “log-normal”, “exponential”, “gamma”, and “Weibull”, are fitted and evaluated to 
identify suitable parameters separately for severity and duration. The Akaike information criterion (AIC) 
(Akaike, 1974) and Bayesian information criterion (BIC) (Schwarz, 1978) are used to select the most 
appropriate distribution, while the Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling 
tests ensure goodness-of-fit at the 5% significance level. Based on our calculations, the “Weibull” 
distribution is the most prevalent for duration across the seven sub-climatic regions. Conversely, the 
“log-normal” distribution is more prevalent for severity data, followed by “exponential” and “Weibull” 
distributions. 

In the subsequent phase, the most suitable copula is identified for each case by comparing the AICs 
of four representative copula functions (i.e., “Gaussian”, “Clayton”, “Frank”, and “Gumbel”), fitted using 
maximum likelihood estimation. We observe that the “Frank” copula exhibits the highest dominance. 

The joint return period, defined as the average elapsed time or mean inter-arrival time between 
occurrences of critical events, is estimated by calculating the probability that all values exceed 
specified thresholds. Specifically, the joint return period (TDS) of a drought event with severity (S) and 
duration (D) exceeding specified thresholds (s) and (d), respectively, is calculated using the following 
equation (Shiau, 2006): 

 

𝑇ௌ =
ா()

(ஹௗ & ௌஹ௦)
=

ா()

ଵିிವ(ௗ)ିிೄ(௦)ାிವೄ(ௗ,௦)
=

ா()

ଵିிವ(ௗ)ିிೄ(௦)ା(ிವ(ௗ),ிೄ(௦))
        (3) 

 

where E(L) represents the expected drought inter-arrival time, FD(d) and FS(s) are the cumulative 
distribution functions of D and S, respectively, and FDS(d, s) is the joint drought duration and severity 
distribution, which can be computed by the copula distribution function C. 

 

2.5. Global warming level 

The CMIP6 climate models include a new and improved representation of processes and a higher 
spatial resolution compared to the previous generation (CMIP5). However, they also show a broader 
range of equilibrium climate sensitivity (ECS). A subset of models have an ECS above the “likely” or even 
the “very likely” range assessed in the Sixth Assessment Report (AR6) of the Intergovernmental Panel 
on Climate Change (IPCC, 2021) based on multiple lines of evidence. These “hot” models simulate a 
warming rate higher than previously expected for a given scenario, which does not seem consistent 
with other lines of evidence. Therefore, using the ensemble mean of CMIP6 models for regional climate 
impact assessments may lead to an overestimation of the magnitude of change. To overcome this 
issue, Hausfather et al. (2022) recommend either basing climate analyses on global warming levels 
(GWLs) rather than on time or using the subset of models most consistent with the IPCC assessment 
of global climate sensitivity. This does not preclude considering high-sensitivity models to investigate 
tail-risks. 

Therefore, in this study, we follow the new approach of IPCC AR6 and the recommendations of 
Hausfather et al. (2022) by complementing scenario-based analysis with projections based on GWLs. 
This approach is justified by the fact that for many climate variables, such as temperature and 
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precipitation, the patterns of future changes are strongly related to GWL but more or less independent 
of the pathway or the time at which the GWL is reached (IPCC, 2021). 

GWLs 1ºC, 1.5ºC, 2ºC, 3ºC, and 4ºC are defined when comparing global mean surface air temperature 
for a certain time in the future with that for the period 1850–1900. The GWL year is estimated for each 
GCM and SSP scenario. The period corresponding to a given GWL for each of the 22 CMIP6 GCMs used 
in this study is inherited from the results of Hauser et al. (2021). To minimize short-term variability, a 21-
year window is employed, encompassing the initial year (YGWL) when the average temperature 
exceeds the threshold and 10 years preceding and following that year. Note that this 21-year window, 
chosen for better symmetry regarding YGWL, differs slightly from Hauser et al. (2021), who applied a 20-
year window with 10 years preceding and 9 years following YGWL. The climatological values and the 
change between the future and baseline periods should be nearly identical for the 21-year and 20-
year windows (not shown). 

The climate response pattern for a specific GWL is determined as the average across all models and 
scenarios that reach that GWL. In our analysis, we provide a summary of the number of available 
models under each GWL and different scenarios in Table S1. For comparison purposes, we also include 
a “Baseline” with a 21-year period from 1994 to 2014 based on 22 reference simulations. However, we 
exclude cases where the first or last year of the 21-year period falls before or after 2015 or 2099 to avoid 
overlapping the Baseline with GWLs. Furthermore, as shown in Table S1, there are only two cases that 
meet GWL 1ºC, so we exclude this GWL 1ºC from our analysis. 
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3. Results 

3.1. Changes in mean annual rainfall and temperatures 

The ensemble mean patterns of the 22 models are examined for the reference period (1985–2014) and 
two future periods: the near future (2025–2054) and the far (or late) future (2070–2099), as illustrated 
in Figure 3. The model ensemble mean for the reference period exhibits strong agreement with 
observation data from the Vietnam Gridded Climate Dataset version 2 (VnGC) (Tran-Anh et al., 2023). 
This high level of agreement is attributed to the use of the BCSD downscaling technique in constructing 
CMIP6-VN, which incorporates bias correction based on the observational VnGC data (Tran-Anh et al., 
2023).  

For mean annual precipitation, the simulations across all periods exhibit a relatively consistent spatial 
distribution (Figure 3). The wettest regions are identified in R4 and R5, certain northern areas of R1 and 
R2, and parts of R6. In future periods, relative changes in precipitation vary by scenario. In the near 
future, most areas of Vietnam are projected to experience a slight increase (approximately 5% in most 
areas), except for some parts of the Central Highlands (R6) where changes are not statistically 
significant. In the far future, precipitation is projected to increase more significantly across the entire 
country (5-10% in most areas). Results for annual changes presented in Figure 4 further confirm these 
trends. Interestingly, while higher median values are projected under all scenarios (except in the near 
future for R5), the interquartile range and outliers remain rather similar across scenarios and periods. 
Statistical validation results (i.e., p-values less than 0.05, indicated as hatched areas in Figure 3) 
suggest substantial uncertainties in projections for R6 and certain areas within R1, R2, and R3. Overall, 
projections for both future periods indicate that rainfall will increase most significantly in regions R4, 
R5, and specific areas of R1, R2, and R3, with R4 and R5 exhibiting the highest degree of significance. 
Meanwhile, the Central Highlands (R6) exhibit minimum and insignificant changes in the near future 
but become wetter in the far future. 

In terms of mean annual temperature, all projections for future periods indicate warmer conditions 
compared to the reference period, with changes being statistically significant (p-value reported from 
a t-test is less than 0.05) across all regions. While differences between scenarios remain modest in the 
near future, the far future exhibits significantly larger differences between scenarios. However, 
although the interquartile range is indeed modest (1–2°C) in the near future, some years may 
experience very high anomalies (>4°C in northern regions) that were not observed in the historical 
period. For the far future, the lowest temperature increase is projected under SSP1-2.6, while the highest 
is obtained under SSP5-8.5. Spatially, although the northern region typically has lower baseline 
temperatures, future temperature increases there are higher than in the southern region. Under both 
SSP2-4.5 and SSP5-8.5 scenarios, some models simulate some years with annual changes as high as 
8°C.  Similarly, higher-elevation areas such as R6 and the western parts of R4 and R6, which currently 
exhibit lower climatological means, are projected to experience excessively higher temperature 
increases compared to surrounding areas. Frequency distributions (Figure 4) further highlight 
disparities in warming magnitude towards the end of the century, with the highest under SSP5-8.5, 
followed by SSP2-4.5, and SSP1-2.6.  

Here, we have provided a brief overview of the changes in rainfall and temperature, as a detailed 
analysis of these changes, along with related extremes, is presented in another study (Tran-Anh et al. 
2024, submitted). The findings indicate that Vietnam is projected to experience alterations in both 
precipitation and temperature patterns. Temperature increases, particularly towards the end of the 
century, show a strong dependence on the selected scenario, highlighting the vulnerability of future 
conditions to emission pathways. While a slight increase in precipitation may lead to wetter conditions, 
the substantial rise in temperature could intensify evapotranspiration, potentially offsetting or even 
reversing the wetter effect in terms of impacts on soil moisture. Notably, the projected changes in 
precipitation patterns exhibit much larger uncertainty compared to temperature, underscoring the 
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necessity for a thorough investigation of the most severe scenarios, which is critical for formulating 
effective response and adaptation strategies to address future climate risks. 

 

Figure 3. Spatial distribution of mean annual precipitation (mm/month) and temperature (°C) (1st and 3rd rows, 
respectively) and projected changes (2nd and 4th rows, respectively) compared to the reference period 1985-2014 
in the near and far future under different SSP scenarios. Hatched areas in panels at the 2nd and 4th rows indicate 
regions where changes projected by the 22 models are statistically insignificant (i.e., the p-value reported from 
a t-test is greater than 0.05). 

 

Source: Authors’ own calculation. Original.  
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Figure 4. Boxplot illustrating the distribution of projected changes in (I) mean annual precipitation (%) and (II) 
mean annual temperature (°C) over the seven sub-climatic regions (a–g), as projected by 22 CMIP6-VN models. 
Results for the reference period (1985-2014) represent the biases between CMIP6-VN models and VnGC 
observations. Results for the near future period (2025–2054) and the far future period (2070–2099) under three 
distinct SSP scenarios illustrate changes relative to the reference period. The y-axis representing precipitation 
has been transformed using the “square root” function to enhance the visibility of low values. 

 

Source: Authors’ own calculation. Original.  
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3.2. Drought projections from multi-model and multi-scenario experiments 

3.2.1. Projected changes in drought conditions 

Although the above analysis of the climatological mean of precipitation and temperature indicates 
that CMIP6-VN aligns well with observations, this does not necessarily imply that droughts calculated 
from this dataset will match observed droughts, due to the non-linear relationship between 
meteorological variables and drought characteristics (Droogers and Allen, 2002; Fu et al., 2023). 
Therefore, to assess the CMIP6-VN’s capacity to represent droughts, we first compare the frequency 
density distributions (FDDs) of SPEI-12 obtained from the CMIP6-VN models with those of the VnGC data 
in the reference period (Figure 5). Across the seven sub-climatic regions, the results demonstrate that 
the FDDs of the CMIP6-VN models closely correspond to the observed SPEI-12. While some 
discrepancies exist among individual models at the peak of the bell curve, the ensemble mean of the 
22 models’ FDDs generally aligns with the observed SPEI-12. 

Figure 5. Frequency density distribution of monthly SPEI-12 in the reference period (1985–2014) for each grid point 
within the 7 sub-climatic regions (a–g). The distributions are derived from the VnGC dataset (shaded area), 
individual CMIP6-VN models (thin black lines), and the ensemble of the 22 CMIP6-VN models (thick black line). 
Orange and blue shading indicates values below and above -0.5, representing dry and wet conditions, 
respectively. 

 

Source: Authors’ own calculation. Original.  

 

Similarly, we also examine the FDDs of SPEI-12 for the two future periods under the three scenarios in 
each of the seven sub-climatic regions (Figure 6). The ensemble results suggest a shift towards more 
positive SPEI-12 values in the future, indicating a tendency towards fewer drought events. However, the 
distribution for the future periods also shows longer tails, including instances extending towards more 
negative SPEI-12 values. This implies that while drought events may become less frequent, rare but 
extreme events with very high severity could occur. The variability in the frequency curves of individual 
models indicates the substantial uncertainty associated with drought projections. Among the 22 
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models, some still exhibit curves that clearly shift to the left, with the density peaks higher than in the 
reference period and located below -0.5 — the threshold for identifying a drought event. This implies 
that these models project more severe drought conditions in the future, especially under the SSP5-8.5 
scenario (Figure 6-III).  

The high number of downscaled products obtained through various combinations of GCMs and SSP 
scenarios used here highlights the large inter-model spread for SPEI-12 projections and hence their 
uncertainty. Thus, this demands an investigation of the future SPEI-12 time series for individual models. 
Figure 7 presents the Mann-Kendall Tau (𝜏) results (Mann, 1945; Kendall, 1948) for the SPEI-12 time series 
derived from each of the 22 selected CMIP6-VN models for each sub-climatic region under the three 
SSP scenarios. A positive (negative) 𝜏 value indicates an increasing (decreasing) trend in SPEI-12 values, 
suggesting wetter (drier) conditions towards the end of the century. 

Under SSP1-2.6, most models, except GISS-E2-1-G, project positive 𝜏 values. In contrast, the “warmer” SSP 
scenarios (i.e., SSP2-4.5 and SSP5-8.5) generally result in more frequent drought occurrences over the 
century. For SSP2-4.5 and especially SSP5-8.5, a greater number of models show negative 𝜏 values. For 
example, only 4 models project negative 𝜏 values in R1 under SSP1-2.6, but 11 models do so under SPP2-
4.5 and SSP5-8.5. Projections under SSP1-2.6 exhibit relatively high consistency among the 22 models, 
suggesting lower uncertainty. However, the uncertainty, i.e. inter-model spread, increases significantly 
for SSP2-4.5 and SSP5-8.5. This could be attributed to the greater projected temperature increases 
under these scenarios, which provide additional energy, leading to complex interactions and 
increased atmospheric instability. The parametrizations of the resulting severe weather phenomena, 
such as thunderstorms and hurricanes, differ among climate models, which may increase uncertainty. 

On the other hand, comparative results also reveal variations across the seven sub-climatic regions. 
For the SSP1-2.6 scenario, the differences between regions are minimal, whereas for the other two 
“warmer” scenarios, the distinctions become more pronounced, underscoring the impact of higher 
temperature conditions on the uncertainty of results. 
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Figure 6. Frequency density distribution of monthly SPEI-12 in the near future period (2025–2054) (blue lines) and 
far future period (2070–2099) (red lines), calculated for each grid point in the seven sub-climatic regions (a–g). 
The distributions are derived from 22 CMIP6-VN models (thin lines) and the ensemble mean of the 22 CMIP6-VN 
models (thick lines). Observations from the reference period (1985–2014) are included for comparison (shaded 
area), with orange and blue shading indicating values below and above -0.5, representing dry and wet 
conditions, respectively. 

 

Source: Authors’ own calculation. Original.  
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Figure 7. Mann Kendall’s Tau (𝜏) values for area-averaged SPEI-12 across seven sub-climatic regions during the 
entire study period (1985–2099). These values are derived from the 22 CMIP6-VN models under three scenarios 
(top to bottom): SSP1-2.6, SSP2-4.5, and SSP5-8.5. Black-bold numbers indicate statistically significant values (p 
< 0.05), while gray numbers denote non-significant values (p ≥ 0.05). 

 

Source: Authors’ own calculation. Original.  

 

To verify the results of 𝝉, time series of area-averaged SPEI-12 are extracted for each of the seven sub-
climatic regions from CMIP6-VN models that perform well over Vietnam and exhibit the most 
pronounced differences, namely HadGEM3-GC31-LL (Figure S1) and EC-Earth3-Veg (Figure S2). Both 
original CMIP6 GCMs for these two selected products provide satisfactory results in representing 
rainfall and temperature over Vietnam, with their final-rank scores even surpassing the ensemble 
mean of all models (i.e., ENS-MEAN in Nguyen-Duy et al., 2023). The results from HadGEM3-GC31-LL 
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indicate a more pronounced trend of continuous drought occurrences across the century under SSP5-
8.5, with some lasting up to several years in the second half of the century. In contrast, the results from 
EC-Earth3-GC31-LL suggest relatively wetter climate conditions in the second half of the century. 
However, the results from EC-Earth3-Veg reveal a considerable number of drought events in the mid-
century compared to the end of the century. This implies that, although numerous models project a 
decreasing trend in drought towards the end of the century, earlier and mid-century periods may still 
experience frequent drought events. 

Using the SPEI-12 values derived from each of the 22 CMIP6-VN models, drought events are identified, 
along with the distinctive characteristics of each individual case. Subsequently, the characteristics of 
drought events are aggregated from the 22 models for each scenario and presented in Figure 8. At the 
national scale, the geographical pattern of drought characteristics remains relatively consistent 
across the 3 SSP scenarios. In terms of frequency, the Central Highlands region (R6) and R1, R2, and R3 
regions tend to experience more drought events compared to other regions. Notably, drought events 
in R6 are also more severe, characterized by higher severity, longer duration, slightly greater intensity, 
and shorter inter-arrival time. Furthermore, the intensity of drought in R6 also appears to be higher. It 
is worth reminding that the majority of projections for this region suggest limited precipitation 
increase, while temperature is unequivocally rising (Figure 3 and Figure 4). Conversely, the coastal 
areas of regions R4 and R5 will experience fewer droughts than the other regions. Furthermore, the time 
interval between consecutive droughts in these regions will be longer compared to the other regions. 
This is because these regions receive significantly more precipitation, as illustrated in Figure 3. On the 
other hand, northern Vietnam, encompassing regions R1, R2, R3, and the northern parts of R4, will 
experience more frequent droughts. However, the characteristics of these droughts are generally less 
severe than those in the Central Highlands. Even if there are differences in projected drought 
characteristics depending on the SSP scenario, there is a trend of increased severity and duration in 
some regions (R1, parts of R4, R5, and R6) in the warmer scenarios SSP2-4.5 and SSP5-5.8 compared to 
SSP1-2.6. 

The aforementioned interpretations, once again, are based on the results ensembled from the 22 
CMIP6-VN models. While this approach may potentially reduce the uncertainty associated with 
multiple model projections, it could also smooth out the signal and potentially lead to results favoring 
a more diminished representation of drought conditions—potentially hiding tail risks. Furthermore, it 
appears that future changes in precipitation and temperature exhibit no discernible relationship in 
both spatial and temporal patterns (Figure 3 and Figure 4). Similarly, the contribution of the two 
variables to the changing trend of SPEI-12 remains unclear, suggesting an investigation of their roles in 
drought projections to gain a better understanding of the future.  
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Figure 8. Spatial distribution of future drought characteristics (2015–2099) ensembled from the 22 CMIP6-VN 
models. The characteristics include (from left to right): frequency (i.e., number of drought events), as well as the 
climatological mean of severity, duration, intensity, and inter-arrival time of all drought events. 

 

Source: Authors’ own calculation. Original.  

 

3.2.2. Roles of temperature and precipitation in drought projection results 

The primary cause of drought has often been attributed to a deficiency of precipitation (Mckee et al., 
1993). However, relying solely on precipitation to derive drought conditions may not yield proper results 
in certain regions where an increasing trend in precipitation has been widely reported, for instance, 
the Sahel, eastern Russia, North China, and northern high latitudes (Ukkola et al., 2020; Zhao and Dai, 
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2021), and even in Vietnam (as depicted in Figure 3). Several studies have underscored the pivotal role 
of temperature, as climate warming exponentially enhances potential evapotranspiration (Vicente-
Serrano et al., 2010; Beguería et al., 2014; Vicente-Serrano et al., 2014; Fu et al., 2023). Notably, Fu et al. 
(2023) concluded that under global warming conditions, the impact of rising temperatures on 
intensifying drought may outweigh that of precipitation. 

Consequently, in addition to the original experiment (referred to as “Original”), which utilized the original 
downscaled projections of precipitation and temperature, we designed two more experiments aimed 
at isolating the individual contributions of precipitation and temperatures to the future climatic water 
balance, CWB (Table 2). The “Detrended-Pr” and “Detrended-Tas” experiments retain the original 
temperature and precipitation values, respectively, but use the detrended and historicized versions of 
precipitation and temperature respectively. To achieve this, the time series of precipitation or 
temperature were first detrended using a least-square linear fit and then adjusted by the 
climatological mean of the reference period 1985–2014. The results of these “Detrended-*” experiments 
are illustrated in Figures 9 and 10, which further validate our assumptions. 

 

Table 2. Experimental design for evaluating the roles of precipitation and temperature in the uncertainty of 
drought projection results. 
 

Experiment 
Data for SPEI-12 calculation 

Precipitation (Pr) Air Temperature (Tas) 

Original Original Original 

Detrended-Pr 
[Detrended Pr] &  

[Reference’s Climatology] 
Original 

Detrended-Tas Original 
[Detrended Tas] &  

[Reference’s Climatology] 

 

In comparison to the “Original” presented in Figure 7, the results of the Mann-Kendall Tau (𝜏) statistic 
presented in Figure 9 clearly demonstrate the role of precipitation and temperature on the evolving 
trend of SPEI-12 across the century. Both new experiments significantly alter drought conditions, 
resulting in distinctly drier or wetter conditions in almost all scenarios. When the increasing trend of 
temperature is removed in the “Detrended-Tas” experiment, the PET is anticipated to be lower than in 
the original experiment, leading to wetter conditions (i.e., a positive 𝜏, indicating an increase in SPEI-12). 
Conversely, when the increasing trend of precipitation is removed in the “Detrended-Pr” experiment, 
water resource scarcity is anticipated to result in drier conditions (i.e., a negative 𝜏, indicating a 
decrease in SPEI-12). 

Figure 10 presents an analysis of the contributions of precipitation and temperature to the SPEI-12 
results for each of the seven sub-climatic regions. Specifically, Figure 10-I employs combined box- and 
violin plots to illustrate the distributions of yearly differences in area-average SPEI-12 between the 
“Detrended” and “Original” experiments (i.e., “Detrended” minus “Original”) during the near future (2025–
2054) and the far future (2070–2099) under three SSP scenarios. All cases demonstrate the distinction 
in the impacts of precipitation and temperature on SPEI-12. When the two sections — “blue-shaded” 
(representing the contribution of precipitation) and “orange-shaded” (representing the contribution of 
temperature) — are distinctly separated at the zero axis, it becomes evident that the discrepancies 
between the two experiments are greater in the far future compared to the near future. This is because 
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changes in both precipitation and temperature exhibit stronger tendencies towards the end of the 
century, as discussed in Section 3.1. 

Furthermore, in almost all cases, the absolute magnitude of “Detrended-Pr” is significantly higher than 
that of “Detrended-Tas”, indicating that precipitation contributes more to the calculation of SPEI-12. 
Additionally, the distributions of differences between “Detrended-Pr” and “Original” are spread over a 
wider range of values compared to those of “Detrended-Tas”. This could be attributed to the large 
spread in temperature projection results, with high temperature outliers (Figure 4(II)), which are no 
longer offset by rising precipitation in Detrended-Pr. When comparing SSP scenarios, SSP5-8.5 clearly 
exhibits the largest discrepancies between the two experiments. In the “Detrended-Pr” experiments, 
the differences with “Original” seem to have more outliers, with many cases being located significantly 
far from the main boxes. This, again, could be attributed to temperature outliers that are no longer 
compensated by rising precipitation in Detrended-Pr. 

To approximately quantify the contributions of precipitation and temperature trends to the SPEI-12 
results, we calculate the percentage of their impacts by dividing the absolute difference between the 
“Detrended” case and the “Original” by the total sum of the absolute differences between both 
“Detrended-*” cases and the “Original”. The results for each sub-climatic region under each SPP 
scenario are illustrated in Figure 10-II, demonstrating that the contribution of precipitation to drought 
results is significantly higher than that of temperature. In almost all cases, the impact of increasing 
temperature on SPEI-12 trends is relatively minor, ranging from about 5 to 15%. However, the influence 
of temperature appears to increase toward the end of the century, with its effect becoming more 
pronounced under the “warmer” scenarios. In the far future under SSP5-8.5, where temperature is 
projected to increase significantly across the entire country, temperature trends account for 
approximately 30% of the SPEI-12 trend results.  
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Figure 9. Similar to Figure 7, but for the “Detrended-Tas” experiment (panel I) and the “Detrended-Pr” experiment 
(panel II). 

 

Source: Authors’ own calculation. Original.  
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Figure 10. Comparison of the “Detrended” experiments, including: (I) distributions of yearly differences in area-
averaged SPEI-12 between the “Detrended” and “Original” experiments (“Detrended” minus “Original”) in the 7 
sub-climatic regions, calculated using 22 CMIP6-VN models for near future (2025–2054) and far future (2070–
2099) under 3 SSP scenarios; and (II) Estimation of the relative impacts of precipitation (blue shaded) and 
temperature (orange shaded) on future drought calculation for each of the 7 sub-climatic regions during 
different future period under 3 SSP scenarios. The numbers in blue/orange zones of panel II presents the average 
percentage of impacts of precipitation/temperature across the 7 sub-climatic regions. 

 

Source: Authors’ own calculation. Original.  
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3.3. Drought conditions under different Global Warming Levels 

To compare drought conditions between specific GWLs and Baseline, we perform a statistical analysis 
of common metrics and the distribution of SPEI-12 values over a 21-year period, with each year 
including twelve 12-month accumulated values of SPEI-12. The results of this analysis are firstly 
illustrated via the box- and violin plots in Figure 11.  Overall, the seven sub-climatic regions exhibit 
remarkably similar patterns. Datasets of SPEI-12 estimated from the Baseline period have box- and 
violin-shaped distributions that are quite similar to GWLs 2°C or 3°C, depending on the region. As GWLs 
increase, the distribution of SPEI-12 values becomes more dispersed, manifesting in a substantial range 
between Q25 and Q75 (i.e., the interquartile range) and the presence of additional outliers. This 
indicates that while the overall patterns of drought may not exhibit significant differences, there is a 
possibility of an increased frequency of extreme drought events with higher GWLs. 

The investigation of drought characteristics during the 21-year period of the Baseline and GWLs 
depicted in Figure 12 further supports the aforementioned assumption. Note that the differences 
between GWLs and the Baseline have been tested for statistical significance using both a t-test and 
the bootstrap technique (Efron and Tibshirani, 1993), with results from both methods closely matching 
(Figure 12 for the t-test and Figure S3 for the bootstrap results). Characteristics of droughts estimated 
for GWLs 1.5°C and 2°C are quite similar and closely resemble the Baseline. The intensity of drought 
events in these GWLs is slightly higher than the Baseline, while the inter-arrival time of drought events 
appears to be longer. For GWL 3°C, the frequency of droughts is comparable to the Baseline period. 
However, all other characteristics appear to be more severe than those of the Baseline. Although the 
frequency of droughts for GWL 4°C can be lower than that of other GWLs and the Baseline, the other 
characteristics clearly indicate that this GWL is expected to experience the most severe droughts. 

Figure 11. Box- and Violin-plot for statistics and distribution of SPEI-12 area-averaged for each climatic region 
during the 21-year period of Baseline and different Global Warming Levels (GWLs), for all climate models and 
scenarios. 

 

Source: Authors’ own calculation. Original.  
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Figure 12. Spatial distribution of drought characteristics ensembled from the available models of the 21-year 
period of Baseline and the differences between GWL results with the baseline period. The characteristics include 
(from left to right): frequency (i.e., total number of droughts during the 21-year period), as well as the 
climatological mean of severity, duration, intensity, and inter-arrival time of all drought events. For the 
differences values, hatched areas indicate regions where changes are statistically insignificant (i.e., the p-
value reported from a t-test is greater than 0.05). 

 

Source: Authors’ own calculation. Original.  



29 

3.4. Future drought emergencies under the most severe projections 

The previous sections highlight a substantial level of uncertainty in the SPEI-12 results among the 
CMIP6-VN models, with a major contribution from precipitation-related uncertainty. To prepare for the 
most severe climate change scenarios in terms of droughts in Vietnam, this section selects the CMIP6-
VN models that exhibit the most pronounced increasing trend in drought (based on the Mann-
Kendall’s Tau values in Figure 7) to explore specific characteristics of droughts under these worst case 
scenarios. Through the analysis, five models have been chosen: HadGEM3-GC31-LL, GISS-E2-1-G, 
FGOALS-g3, CNRM-ESM2-1, and ACCESS-ESM1-5. It is worth noting that, in addition to projecting an 
increasing trend in drought toward the end of the century, these selected models also demonstrate 
relatively good simulation capabilities for the historical period for Vietnam, as evidenced by their high 
rankings in Nguyen-Duy et al. (2023). 

Figure 11 illustrates the spatial distribution of drought event characteristics under different scenarios. 
To facilitate qualitative comparison, the color scales of Figure 13 are maintained in accordance with 
those of Figure 8. It is evident that the results from the five selected models are significantly more 
severe than the ensemble of 22 models. In the most severe case, drought events appear to occur 
approximately 1.5 to 2 times more frequently, exhibiting higher severity and longer duration. 
Furthermore, the intensity and inter-arrival time also exhibit a tendency toward worsening.  

As the “warmth” of scenarios increases, the severity of drought events tends to intensify, and SSP5-8.5 
exhibits the most extreme results. In terms of frequency, the Northern region (i.e., R1–3), Central 
Highlands (i.e., R6), and Southern region (i.e., R7) exhibit a distinct pattern, experiencing a higher number 
of drought events. Additionally, the severity and duration of droughts are also more pronounced in 
these regions. The average intensity of drought events reveals that regions R1, R6, and the northern part 
of R7 are projected to face more intense droughts in the future, particularly under the most severe 
scenarios. Regarding the inter-arrival time, higher SSP scenarios result in shorter intervals, which aligns 
with the increased frequency of consecutive events. In contrast, the Central and Coastal regions of 
Vietnam are projected to experience less severe future drought conditions compared to other regions. 
This could be attributed to the fact that the future precipitation projections consistently indicate a 
substantial increase in rainfall in these areas. 
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Figure 13. Spatial distribution of future drought characteristics (2015–2099) ensembled from the 5 most severe 
CMIP6-VN models (i.e., HadGEM3-GC31-LL, GISS-E2-1-G, FGOALS-g3, CNRM-ESM2-1, ACCESS-ESM1-5). The 
characteristics include (from left to right): frequency (i.e., number of drought events), as well as climatological 
mean of severity, duration, intensity, and inter-arrival time of all drought events. 

 

Source: Authors’ own calculation. Original.  
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Utilizing the methodology outlined in Section 2.4, we construct bivariate joint distributions employing 
copulas to estimate the joint distribution of drought duration and severity. The results are presented in 
Figure 14, with overlaying lines indicating the return periods at 5 years, 10 years, and 50 years for each 
sub-climatic region under the 3 SSP scenarios. This visualization shows the disparities among the 
scenarios in most sub-climatic regions. In general, events with higher return periods tend to appear 
with longer durations and greater severity. In most cases, the “warmer” SSP scenarios tend to 
experience more severe droughts (including both extended duration and greater severity), with the 
exception of R4, where the differences between scenarios are minimal.  Regions such as R1, R3, and R6 
exhibit the most severe and prolonged drought events at all return period levels, with distinct 
differences between scenarios. Region R6 is particularly susceptible to experiencing the most severe 
drought conditions in terms of both severity and duration. Under the most severe scenario of SSP5-8.5, 
a 50-year return period drought can accumulate an absolute SPEI-12 value of 60 over a 31-month 
period. The region has a very high probability of experiencing extreme drought events. 

Figure 14 also illustrates that during the Reference period (1985–2014), both observations and the 
modeled drought events exhibit a striking similarity. Statistically, the ensemble of all drought events 
(circle points) during the Reference period in both cases (green- and purple-circle points) exhibits 
severity and duration characteristics equivalent to events with a return period of approximately 5 
years. Meanwhile, the extreme drought events (i.e., events with either duration or severity greater than 
the 95th quantile) (green- and purple-triangle points) correspond to return periods of approximately 
10 to 15 years, indicating their rarity and greater intensity compared to average events. For better 
clarity, this interpretation can be expressed as follows: a drought event with a duration and severity 
comparable to the 5-year/10-year return period line has approximately a 20%/10% probability of 
occurrence, respectively.  

For results under different SSP scenarios, the mean of all events during the period 2015–2099 exhibits 
characteristics of drought severity and duration that are predominantly located between the lines for 
return periods from 5 years to 10 years. Given that the length of the future period is significantly larger 
than that of the reference period (85 years vs. 30 years), it is possible that the results for the future 
period may be slightly underestimated, as the average potentially smoothes out the results. In all 
regions, larger changes are projected for extreme drought events. The duration of extreme events 
(>95th quantile) is projected to increase from approximately 15 months to around 30 months, while 
severity, quantified by the total absolute SPEI-12 values for each event, is projected to rise from about 
20 to 40–50 depending on the region. Nevertheless, it is crucial to recognize that, in certain regions, 
such as R1, R3, and especially R6, some unprecedentedly severe droughts are likely to emerge in 
extreme cases under SSP2-4.5 and SSP5-8.5 (orange- and red-triangle points), exhibiting 
characteristics equivalent or surpassing those of an event with a return period of 50 years, meaning 
approximately a 2% probability of occurrence. 
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Figure 14. Bivariate joint return periods at 5-year (dotted lines), 10-year (dashed lines), and 50-year (solid lines) 
levels estimated from 5 most severe (denoted as 5-driest) CMIP-VN models for the entire future period (2015–
2099) based on area-averaged drought duration (unit: months) and severity (sum of absolute SPEI-12 values 
during each event) for each of the 7 sub-climatic regions under the scenarios of SSP1-2.6 (blue lines), SSP2-4.5 
(orange lines), and SSP5-8.5 (red lines). Circle markers represent the mean of all events, calculated from either 
Observations or the 5-driest CMIP6-VN models under the different scenarios (1985–2014 for Reference, and 
2015–2099 for the SSP scenarios), while the triangle markers represent the means of all extreme events (i.e., 
events with either duration or severity greater than the 95th quantile). The colors of the markers are described 
in the legend. 

 

Source: Authors’ own calculation. Original.  
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4. Conclusions 

In this study, we employed the most up-to-date high-resolution downscaling products from 22 CMIP6 
GCMs, known as the CMIP6-VN dataset, to investigate drought conditions over the seven sub-climatic 
regions of Vietnam. Daily data of precipitation and temperatures at a 10-km resolution from CMIP6-VN 
were utilized to calculate the Standardized Precipitation-Evapotranspiration Index (SPEI), a drought 
index that incorporates the effects of both precipitation and temperature-induced 
evapotranspiration. Our investigation was divided into three main parts, with key findings summarized 
as follows: 

1) First, we explored the ability of CMIP6-VN to represent precipitation and temperature for the 
reference period (1985–2014) and the future period (2015–2099). The CMIP6-VN dataset can well 
capture the major characteristics of these variables in Vietnam. While temperature is projected to 
increase significantly across the country under all climate scenarios, with higher levels of warming for 
higher GLWs and high statistical significance, changes in precipitation remain uncertain, due to the 
large inter-model spread, although a general trend toward wetter conditions is projected. We 
subsequently discussed that, due to the large inter-model spread in the projections from multiple 
CMIP6-VN models, simple climatological means or ensemble approaches may obscure important 
drought signals and their associated risks, especially in the Central Highlands (R6). 

2) Given that both temperature and precipitation contribute to the calculation of SPEI-12, we conducted 
two additional experiments to assess their respective impacts on drought estimation. This analysis 
aimed to determine the extent to which the uncertainty in precipitation projections influences drought 
conditions. The results demonstrate that precipitation has a significantly greater impact on the results 
of drought than temperature. Even in the most “warming” scenario, where temperature is projected to 
rise significantly toward the end of the century, precipitation still accounts for approximately 70% of 
the trend in SPEI-12. Nevertheless, temperature remains a significant factor in drought estimation, and 
failing to account for it would lead to an underestimation of future drought conditions. 

3) Drought conditions under the different GWLs 1.5°C, 2°C, 3°C, and 4 °C were investigated, showing that 
while drought may not occur more frequently at high GWLs, their severity and intensity would increase, 
especially in the North regions and the Central Highlands. 

4) Given the large inter-model spread associated with ensemble projections of drought, we selected 
five models that perform well over Vietnam and exhibit the most severe drought trends to further 
investigate worst-case scenarios. Even in this case, both the climatological mean of all drought events 
and the mean of extreme drought events show high agreement between observations and 
simulations of the 5 models during the reference period. Future projections indicate increased severity, 
duration, and intensity, particularly in regions R1, R2, and R6. In all regions and scenarios, large increases 
in the severity and duration of extreme events are projected.  It is noteworthy that while the reference 
period can experience extreme drought events comparable to those with a return period of 10 years, 
the future period may be more hazardous, potentially experiencing events equivalent to those at a 
return period of 50 years.      

Overall, in this study, we have developed a comprehensive and systematic approach to quantify the 
risks of drought events in Vietnam. While future drought characteristics remain highly uncertain across 
all climate scenarios due to significant inter-model spread, a key finding emerges: despite a general 
trend toward slightly wetter conditions, more severe—though not necessarily more frequent—drought 
events are projected. Some models even indicate the potential for prolonged and intense droughts, 
particularly under high warming levels. This finding presents a significant challenge for adaptation 
policy planning. Further action and research are essential not only to narrow the range of uncertainty 
but also to provide policymakers with the tools to develop targeted and flexible adaptation strategies. 
These strategies must align with the level of risk that society is willing to cope with and able to prepare 
for.  
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From a technical perspective, the use of dynamical downscaling, such as the efforts undertaken by 
the Coordinated Regional Downscaling Experiment - Southeast Asia (CORDEX-SEA) (Tangang et al. 
2020; Ngo-Duc et al. 2024) could be considered to further address uncertainty and refine the 
understanding of drought patterns under future climate scenarios. Integrating such an approach 
would be a crucial step toward enhancing confidence in drought projections and supporting more 
informed decision-making in Vietnam. 
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Appendix 

A.1. Statistics on the number of available models for each Global Warming Levels 

Table S1. Statistics on the number of available models for each Global Warming Levels 

GWLs Total available models Available models of SSP1-2.6 / SSP2-4.5 / SSP5-8.5 

1.5 33 9 / 12 / 12 

2.0 53 12 / 21 / 20 

3.0 31 0 / 10 / 21 

4.0 15 0 / 1 / 14 
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A.2. Temporal evolution of area-averaged SPEI-12 

Figure S1. Temporal evolution of area-averaged SPEI-12 for the seven sub-climatic regions under SSP5-8.5, 
projected by the downscaled product of HadGEM3-GC31-LL. The red-dashed lines indicate the -0.5 threshold, 
which is used to detect drought events. 
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Figure S2. Similar to Figure S1, but for EC-Earth3-Veg. 
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Figure S3. Similar to Figure 12, but the difference values have been tested for statistical significance using the 
bootstrap technique. Hatched areas indicate regions where changes are statistically insignificant (i.e., the p-
value reported from the bootstrap test is greater than 0.05).  
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